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SUMMARY 

This report presents a new approach to the solution of matrix problems 

resulting from integral equations of mathematical physics. Based on the inherent 

smoothness in such equations, the problem is reformulated using a set of ortho- 

gonal basis vectors leading to an equivalent coefficient problem which can be of 

lower order without significantly impairing the accuracy of the solution. This 

approach has been evaluated using a two-dimensional Neumann problem describing 

the inviscid, incompressible flow over an airfoil. Two different kinds of mode 

functions have been investigated, namely eigenvector series and Fourier series. 

The first method has the disadvantage that the calculation of each eigenvector 

is a time-consuming process, and the results obtained do not indicate that this 

is offset by the need to use only a small proportion of the eigenvectors. On the 

otherhand,the Fourier method is attractive since all of the expansion coefficients 

can be calculated very rapidly using the Fast Fourier Transform algorithm. The 

method developed here uses all of these coefficients in an approximate method 

which exploits the known structure of the transformed coefficient matrix and very 

promising results for the flow over a realistic airfoil are obtained. The mode- 

function method is aimed at reducing the computer time for the solution of the 

equations for large three-dimensional cases. On the basis of the results pre- 

sented here, it is shown that an order of magnitude reduction in this computer 

time can be expected for such problems as compared with the time for a direct 

matrix solution. 



1.0 INTRODUCTION 

1.1 General Background 

The result of the discretization of the governing integral equation for 

many physical problems is a large system of linear simultaneous equations. Such 

systems are usually highly "nonrandom" since the original physical problem gen- 

erally possesses a smoothly varying bahavior away from isolated singular regions. 

This is particularly true of the integral equations of many aerodynamic flow 

problems where the complexity comes from the geometry and a large nutier of 

points must be used to represent this adequately. This large number of points 

leads to a smoothly varying local behavior of the discrete quantities, but it 

also leads to the high computing costs associated with such calculations. For 

m simultaneous equations,the computing time required for a direct solution is 

proportional to m3/3 while that required for an iterative method is pm2 

where p is the number of iterations required to obtain a fully converged solu- 

tion. On the other hand,the central thesis of the mode-function approach pre- 

sented here is that, for problems of this kind, advantage can be taken of.the 

locally smooth character by replacing such a matrix equation with a related coef- 

ficient problem for certain preselected mode functions. Since a smooth function 

can, in general, be represented adequately in terms of a relatively small number 

of such functions, the size of the coefficient ma 

smaller than that of the original problem without 

accuracy. 

rix can 

serious 

One problem which. is of great practical sign ficance 

the internal or external, inviscid, incompressible flow a 

be significantly 

y affecting the 

is the calculation of 

out a given shape. This 

is the classical boundary-value problem for Laplace's equation with a well- 

established mathematical pedigree (the Neumann problem) which leads to an integral 

equation of the second kind. "Panel methods" which provide a numerical solution 

of this problem have been used for a number of years for aircraft design both in 

the United States and in Europe. The main difficulty associated with their use 

is the cost incurred both in terms of the labor involved in the preparation of. 

the input data and the computational effort involved in the solution of the 

resulting equations. The reduction of this computation time is, therefore, a 



primary aim of the mode-function concept although it should be emphasized that 

the method presented here is applicable to the solution of any matrix problem, 

provided that the matrix possesses a dominant diagonal. The panel method 

developed at Douglas Aircraft Company is based on a source distribution and the 

associated influence matrix does possess a dominant diagonal. This problem is, 

therefore, particularly suited to the mode-function approach and so it has been 

used as the basis for most of the results presented here. 

A study of the application of the mode-function method to two-dimensional 

Neumann problems has been undertaken although the main practical application of 

the techniques would be in three-dimensional calculations for which the computa- 

tion times are significant. However, this present study demonstrates the valid- 

ity of the mode-function,concept while providing a guide to the reductions in 

computing time which can be expected for three-dimensional calculations. This 

work is also highly relevant to three-dimensional problems since, as sugqested 

in section 6, the fitting of a large matrix associated with a complex three- 

dimensional configuration would be undertaken in smaller blocks corresponding 

to two-dimensional sections. The operation count presented in section 6.2 

indicates that a three-dimensional mode-function method could offer significant 

savings in computer time compared with a direct matrix solution method. 

Before proceeding with an outline of the theoretical basis of the mode-func- 

tion approach, it will, however, be worthwhile to discuss the principal features 

of the panel method developed at Douglas Aircraft Company. 

1.2 The Hess Panel Method 

The low-speed flight regime occupies a special place in the field of aero- 

dynamics; first because it is the one regime in which all'vehicles must operate, 

and second because only at low speed is the governing flow equation linear 

(Laplace's equation) so that powerful flow-calculation techniques can be employed. 

In particular, the problem can be formulated as an integral equation for a certain 

singularity distribution over the surface of the body about which flow is to be 

computed (ref. 1). This procedure owes its great efficiency to the fact that the 

domain of calculation can be restricted to the body surface, i.e., calculations 

need not be performed in the field of flow. In three-dimensional problems the 



numerical implementations of this procedure have represented the body surface by 

a large number of small four-sided surface elements or "panels" and thus have 

come to be called "panel methods." In the Hess version,these panels are placed 

on the actual body surface. This renders the method numerically "exact" and 

applicable to any arbitrary body. Some alternative formulations place panels 

interior to the body, e.g., on the mean surface of a wing, These latter methods 

are applicable only to a restricted class of bodies. 

The above-described method of approximating a three-dimensional body is 

shown in figure 1. On each element,a control point is selected where the bound- 

ary condition of zero normal velocity is to be applied and where surface veloc- 

ities are ultimately calculated. A "matrix of influence coefficients" is then 

calculated. This consists of the complete set of velocities induced by the ele- 

ments on each others' control points for unit values of all singularity strengths. 

The integral equation that expresses the zero normal-velocity boundary condition 

is then approximated by a set of linear algebraic equations for the values of the 

singularity strengths on the surface elements. In lifting cases,the Kutta con- 

dition along the trailing edge yields a small nuder of additional equations. 

The order of the "matrix of influence coefficients" and the order of the coef- 

ficient matrix of the linear equations are both equal to the number of elements 

used to approximate the body (or nearly equal, depending on details of the numerical 

procedure). In the basic form of the method,(ref. 2) the surface elements are 

plane quadrilateral "panels," and each singularity strength is assumed to be 

constant over each element -a step function from element to element. The two 

time-consuming parts of the computing task are the calculation of the "matrix 

of influence coefficients" and the solution of the resulting linear equations. 

The relative importance of these two tasks depends on the body considered, the 

element number and the type of numerical technique employed. However, as a 

general rule, for complicated bodies which require very large numbers of panels, 

the solution of the linear equations is the harder task. 

The Hess three-dimensional panel method in both its lifting (ref. 2) and non- 

lifting (ref. 3) versions has been distributed very widely to various government 

agencies, industrial concerns and universities. In general, very satisfactory 

results have been obtained. Probably the principal disadvantage of this or any 
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three-dimensional panel method is the expense of running each case. For a 

complete aircraft configuration , a very large number of panels is required to 

adequately represent the geometry, and it is extensive both to generate the 

necessary geometric input data and to solve the resulting system of equations. 

A major reduction of the time for the preparation of the input data has been 

achieved by the automatic geometry handling programs developed by Halsey (ref. 4). 

This report is concerned with the second problem, that of reducing the computina 

cost of the matrix solution. 

1.3 The Mode Function Approach 

Having outlined the panel method to which the new approach is directed, a 

more detailed presentation of the mode-function theory can now be given. The 

fundamental assumption on which it is based is that both the singularity strength 

and the elements of the influence matrix must necessarily be slowly varying func- 

tions of position on the body surface. Therefore, their values on adjacent 

panels cannot be very different, so that solving the complete set of linear equa- 

tions in which every unknown is assumed to be independent is wasteful in the 

sense that not all of the available information is being used. In the original 

problem, neighboring quantities are not in any sense independent. The mode-func- 

tion method,therefore,seeks to fit the matrix and the singularity distribution 

to account for their continuity and dependency. The new problem becomes that of 

determining the "strength coefficients" of the chosen mode functions. Since, 

for example, a relatively small number of Fourier coefficients will contain as 

much information as a larger number of data points, this coefficient problem can 

be of much lower order than the original problem. 

Two basic kinds of fit have been investigated based on Fourier series and 

on eigenfunction expansions. While the eigenfunction method appears to offer 

the advantage of using mode functions specifically related to the individual 

problem, they have the disadvantage that their calculation is a time-consuming 

process. Their use would, therefore, only be justified if accurate solutions 

could be obtained in terms of a very small number of functions and the results 

presented here indicate that this is not achieved in practice. On the other 

hand, the use of Fourier series is attractive since these functions are well 

understood and the use of the Fast Fourier Transform (FFT) algorithm offers an 
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extremely efficient way of calculating all of the coefficients for a given 

function. The details of the application of each of these methods will be 

presented in the next section and some results bearing out these statements 

will be presented in section 3. However, before proceeding to that 

there are a few general points on the application of the mode-function method to 

two- and three-dimensional Neumann problems which should be discussed. 

The basic integral equation for the source distribution on a three- 

dimensional nonlifting body takes the form (ref. 2) 

U(P) - 
w 

dqNb,q)dS = -Z(P) . Ta 
S 

(1) 

where a(p) is the unknown source density at a point p on the body surface S. 

The kernel function K(p,q) represents the negative of the normal velocity 

induced at the point p by a unit source distribution over the surface element 

dS at the point q. 

The corresponding equation for a two-dimensional problem takes the closely 

related form 

a(p) - 1 a(q)K(p,q)ds = -g(p) * G,,, (2) 
C 

where the kernel function K now takes on a simpler form. However, when equa- 

tions (1) and (2) are discretized, both lead to a matrix equation of the form 

m 

u. - 
1 c 

A ij'j = fi 

j=l 

i = 1, . . . m (3) 

where m is the total number of surface panels or arc length elements. The 

values A.. 
1J are known as the influence coefficient matrix. Thus, it can be 

seen that, in principle, the two- and three-dimensional problems are mathe- 

matically equivalent, although in general the vaTue of m will be much larger 

and the calculation of the influence coefficientswill be more complicated for 

three-dimensional flows. Also, the structure of the matrix [Aij] and the 
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column vectors [uj] and [f,] will be rather different in the two cases. 

This point will, however, be considered in greater detail in section 6 when 

the extension of the mode-function concept to three-dimensional problems is 

discussed. The theory and results presented here will therefore be directed at 

the two-dimensional problem. 

The standard solution method based on a source distribution combines the 

"self-influence term" with the remaining terms to recast equation (3) as 

m 

c A' 
ij'j 

= fi 

j=l 

i = 1, . . . m 

where A!. = 6.. -A... This equation now takes on a form more closely related 

to an in~~gral'~quat:~n of the first kind. However, since Aij << 1, it should 

be noted that it still possesses the essential qualities associated with integ- 

ral equations of the second kind, namely that the matrix [Aij] is diagonally 

dominant. Therefore, it has desirable characteristics for solution both by 

direct Gaussian elimination and by iterative methods. It will be shown in 

section 4.5 that this property is also necessary for the success of the mode- 

function method presented here. 

From the mode-function point of view, the matrix A{j, regarded as discrete 

values of a function of two variables, has the undesirable property that it has 

a large spike corresponding to the dominant diagonal. Since we seek to fit the 

matrix in terms of smoothly varying mode functions, it is therefore natural to 

treat the formulation given in (3) and attempt to fit the matrix Aij. 
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2.0 GENERAL THEORY 

2.1 The Eigenvector Form 

Having established the background for the mode-function concept, it is now 

appropriate to present the theory and establish a notation for a more detailed 

discussion. The eigenvector method will be presented first since this can pro- 

vide some insight into the question of whether to use a formulation based on 

equations of the first or the second kind. Despite the close relationship 

between such equations, it should be pointed out that this is not simply a ques- 

tion of whether or not the diagonal term is included in the matrix. If a normal- 

velocity boundary condition is used, a pure source distribution leads to an 

equation which has the natural form of an equation of the second kind, whereas a 

pure vortex distribution will lead to an equation of the first kind. 

Matrix notation will be used throughout since some of the more involved 

aspects of the Fourier version to be presented in subsequent sections can most 

easily be condensed into such a format. Thus, equations (3) or (4) can be 

represented as 

f = e-A& = A'& (5) 

where f and e are column vectors consisting of the given "onset flow" and the 

unknown singularity distribution while A and A' are the two different forms 

for the influence coefficient matrix. The precise form of these matrices will 

depend both on the type of singularity distribution selected and on the way in 

which the problem is discretized. However, to simplify the discussion, it 

will be expedient to introduce the base case in which p is the source density, - 
assumed to be constant over each element, and A is obtained by integrating 

the kernel over linear elements. The modifications introduced by the applica- 

tion of the mode-function method to alternative singularity distributions, pre- 

sented in section 5, is straightforward. 

Pursuing first the idea of fitting the matrix A in equation (5), note that 

it can be regarded as a function of two variables defined at m2 equally spaced 

intervals, where the independent variables correspond to the row and column 

numbers. By separation of variables, this function can be approximated by a 
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product of two functions f= (f,, f2, . . . fm) and T= (gl, g2, . . . g,) 

dependent on the row and column number, respectively. Thus, an element Aij 

of the A matrix is approximated by figj and the square of the error involved 

in this approximation is 

Differentiating this expression with respect to fi and gj leads to the con- 

ditions under which this error will be a minimum. Thus 

As = k2f, k2 = g; + g; + . . . + g; 

and (7) 
iiE= h2a, h2 = f: + f; + . . . + ff 

where A is the transpose of A. Therefore, f and CJ will be eigenvectors 

of the matrices AA and AA since 

and 

Ait- _ h2k2f 

iAn= h2k2g 
(8) 

Now AA and AA are syrrrnetric matrices and so, provided that their eigenvalues 

are distinct, they will each possess a set of orthogonal eigenvectors which must 

satisfy 

0) and 

or 

and 

The corresponding fit in terms of the first n of these eigenvectors is 

(11) 
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There are several points about this scheme which should be made at this stage. 

The procedure would be out of the question if the eigenvectors had to be cal- 

culated directly from equation (10) since the formation of the matrix products 

AA and &-J would require O(m3) operations, and so this operation alone would 

require more computer time than the direct solution. However, it is possible to 

show that an adaptation of the traditional power method of iteration can be 

applied to equation (9), and one eigenvector can be calculated in O(pm2) oper- 

ations where p is the nutier of iterations required (typically p '~5 or 6). 

It is therefore clear that, in order for this method to be competitive with the 

direct matrix solution, n must be small compared with m since the operation 

count could otherwise approach or exceed O(m3/3) which is required for the 

direct solution. 

In terms of the matrix notation, equation (11) can be written 

A = FDi; (12) 

where D is the diagonal (n x n) matrix of eigenvalues and F and G are 

the basic (m x n) "fit matrices" whose columns are defined by the eigenvectors 

f+ and gk (k = 1, . . . n), respectively. Similarly, one can express the 

vectors f and e in terms of the matrix G to give 

f= Gb and e = G& (13) 

so that equation (5) can be written 

Gb = Ga- FDGG& (14) 

It has been noted that the eigenvectors fk and g+ form two orthogonal sets 

of vectors and so, choosing them to have unit length, it follows that the matrix 

G is orthogonal, so that GG = I. Equation (14), therefore, gives 

b = a - Cc where c = GFD (15) .- 

The solution of this equation will involve O(n3/3) operations, but we have 

already asserted that the scheme will only be competitive if an adequate approxi- 

mation to equation (5) can be obtained for n C-Z m. Thus, the solution time 

for equation (15) will be negligible compared with the time required to find 

the eigenvectors. 

The accuracy of this truncated equation will in turn be governed by the fit- 

tability of the matrix A and the nature of the vectors f and k Since the 
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behavior of these eigenvector expansions is unknown a priori, the validity of this 

truncation must be based primarily on the numerical results obtained. This situ- 

ation contrasts strongly with Fourier series where the behavior and the factors 

governing convergence are well understood. 

Before proceeding with an outline of the theory behind the Fourier series 

expansion, it will be worthwhile to derive the truncated eigenvector equation 

corresponding to an integral equation of the first kind since this throws some 

light on the general fittability of such equations. If F' and G' are the 

eigenvector matrices corresponding to the matrix A' then, following equations 

(12) and (13) 

A' = FlDl$ 

and 

f= F'$' and P = G'& - 

Equation (5) can then be written as 

or 

al; = dl;/"l; k = 1, . . . n 

(16) 

(17) 

It follows that, since the eigenvalues XI; decrease as k increases, the 

expansion for p will only converge if the numbers dk' decrease even more 

rapidly. The firm of equation (17) does indicate, however, that for problems 

which fall naturally into the form of an equation of the first kind, the converg- 

ence of the eigenvector expansion of the solution will be poor. This is con- 

sistent with the results derived from the Fourier expansion method for which 

unsatisfactory results were obtained when applied to an equation in this form. 

In fact, the method presented in section 4.5 is shown to be valid only for equa- 

tions of the second kind for which the corresponding matrix A' possesses a 

dominant diagonal. 

2.2 The Fourier Form 

Much of the discussion given in the previous section is also applicable to 

the Fourier format, and so the theory can be presented more briefly. It should 

be noted at the outset that this mode of fitting relies on the existence of 

known rapid calculation methods and known artifices to accelerate converqence 

10 



even though Fourier series as such have no particular relationship to Neumann 

kernel functions. It is, however, based on the observation that the right-hand 

side vector f, the source vector e and the influence matrix are arrays of 

numerical values which are necessarily periodic since f, = f,, 9 P' = Pm+', 
A i,l =A i,m+l and Al,j = Am+l,j. For instance, in figure 2, with m = 12 the 

points i = 1 and i = 13 will be identical. The analysis presented in this 

section will be based on this periodic behavior although it should be noted that 

in practice there may arise discontinuities in the fitted vectors such as that 

occurring across the sharp trailing edge of an airfoil. Modifications to the 

fitting procedure necessary to cope with such discontinuities will be presented 

in section 4. 

The best rate of convergence for a finite Fourier series is obtained by 

using a pure sine series. However, such a series will vanish at the ends of 

the interval over which the series is defined, and so to fit a general function 

an additional constant must be introduced. Thus, if the function to be fitted 

is defined by the values (f,, f2, . . . fm) the series expansion will be 

m 
‘f = 

j b, + c bk sin(j-l)(k- ')h where h = s/m ( 

k=2 

In this expression, b, = f, and the remaining coefficients are the standard 

Fourier sine coefficients of the function values (fj -b,). Using the matrix 

notation introduced in the previous section, this can be written 

18) 

f= Gb 

in which the transformation matrix now has the form 

G= 

10 0 . 

1 sll s12 * 
1 s21 s22 - 
. . . . 

. . . . 

. . . . 

' 'm-1 1 'm-1 2 ' , 3 

. . 0 

. . 'l,m-1 

. . '2,m-1 

. . . 

. . . 

. . . 

. . S m-l,m- 

(‘9) 

(20) 
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where S.. = sin(ijh), h = a/m. 
1J 

Similarly, the source density can be 

expressed as a sine expansion with coefficients h, 

P = G& (21) 

Application of this process first to the rows of A and then to the columns of 

the resulting matrix leads to 

A = GBG (22) 

where B is a matrix consisting primarily of Fourier coefficients. 

The elements of b and B can be obtained by the application of the 

FFT algorithm to one- or two-dimensional arrays. Substitution of these expres- 

sions into equation (5) gives 

Gb = Ga- GBGG& 

Let D = GG, then D can be shown to have the form 

m a, u.2 . . . 'm-1 

ul m/2 

I 
O2 m/2 

D = 0 
. . 

. 0 . 

. . 

'm-1 m/2 

(23) 

(24) 

where 

Ok = cot(kh/2) (k odd) 

= 0 (k even) 

The simple structure of the matrix D will make the calculation of the product 

DD very rapid. 

Since the matrix G is nonsingular, equation (23) can therefore be written 

as 

b= L-C& where C = BD (25) 
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This represents a set of m equations in m unknowns which is exactly equiv- 

alent to the original system of equations. However, if we assume that the known 

vector f and the solution vector p _ can be adequately represented in terms of 

their first n coefficients, then equation (25) can be truncated to give a sys- 

tem of n equations in n unknowns. The precise conditions under which this 

truncation are valid are discussed in detail in section 4.5 at which time an 

improved scheme is developed. However, since this simple truncation is used for 

most of the results presented, further discussion of this point can be postponed 

until section 4.5. 
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3.0 APPLICATION OF THEORY TO SMOOTH AIRFOLLS 

3.1 Definition of Test Case Airfoils 

For the initial testing of the mode-function method, several special airfoils 

were used in order to give direct control of such factors as: (a) smoothness, 

(b) accuracy of surface definition, (c) exactness of velocity distribution, etc. 

These airfoils were defined by the "pole" theory of James (ref. 5) which uses 

conformal mapping from a unit circle. The two smooth airfoils used are desig- 

nated E33 and El3 and their shapes are shown in figures 3 and 4. 

The E33 airfoil has a high curvature in the trailing-edge region but no 

actual discontinuity in surface slope. The source density as a function of the 

arc length will be continuous but there is a sharp peak around the trailing-edge 

region and so the airfoil does provide a severe test case. The second airfoil, 

E13, does not possess the high curvature of E33 and so it provides a much simpler 

test case. However, comparison of the results for these two airfoils provides a 

useful guide as to how this high curvature affects the rate of convergence of the 

solution for the different methods being tested. It should be noted that, for all 

the results presented here, the point numbering starts from the trailing edge or 

rear stagnation point and proceeds in a counterclockwise direction around the lead- 

ing edge and back to the starting point. (See fig. 2). 

Before presenting the results obtained for these two airfoils it will be 

worthwhile to consider the question of the fittability of the normal velocity 

matrix. As previously noted in section 1.3, the matrix A' in equation (5) is 

not well suited to fitting since it possesses a large spike on the diagonal, but 

the matrix A has a smoother behavior. The 49th row of a 96-element matrix A, 

corresponding to the negative of the normal velocity induced at the 49th control 

point by the other elements (see fig. 3), is shown in figure 5. The Neumann 

matrix used here is based on linear elements with constant source strength on each 

element and so the diagonal term in A is zero qiving rise to the spike shown at 

j = 49 in figure 5. This could be removed by including a term dependent on the 

airfoil curvature as in the higher-order method (ref. 6). However, numerical 

results indicate that this effect is of little importance, and it is clearly small 

compared with that found in the A' matrix where the value jumps from about 0.05 
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to 1.0. Therefore, the source distribution results presented here are all based 

on the lower-order matrix formulation. Of greater significance as far as the 

fittability is concerned is the secondary spike caused by the influence of the 

source elements at control points on the opposite surface of the airfoil. This 

can be particularly severe for a thin airfoil where the control point on one 

surface can approach very close to the source elements on the opposite surface. 

Figure 6 illustrates this effect, showing the behavior of the 21st row of the 

matrix A (see fig. 3) for the E33 airfoil. There is no way of removing this 

contribution prior to fitting, and so this effect can be expected to govern the 

number of terms required to obtain an accurate solution. The use of alternative 

singularity mixes might be expected to alleviate this problem since a vorticity 

distribution is known to behave well for thin airfoils. This topic will, however, 

be discussed in greater detail in section 5. 

3.2 Eigenvector Series Results 

It was pointed out in section 2.1 that the number of operations required to 

calculate n eigenvectors associated with a matrix of order m is O(p n m2) 

where p, the number of iterations required, is about 5 or 6. Therefore, to 

be competitive with a direct solution, the eigenvector method must give acceptable 

answers for n ?I m/(3p) 2r m/15 and to give an improvement in the computer time, 

a significantly smaller value for n wou 

Results obtained for airfoil E33 with 

indicate that this efficiency requirement 

show the source density and the tangentia 

d be requ ired. 

96 points 

cannot be 

velocity 

, presented in figures 

achieved. These resu 

distribution, plotted 

7-9, 

1ts 

against 

the normalized arc length. Thus, for n = 20 or n/m 'L l/5, the source density 

and the velocity distribution in figures 7 and 8 are inadequate. For n = 30 

the velocity distribution, figure 9, still possesses a significant oscillation. 

The results for the 96-point El3 airfoil are even more unsatisfactory with the source 

density, shown in figures 10 and 11, still oscillating badly even for n = 40, or 

n/m ,X 2/5. 

On the basis of these results, the basic eigenvector method does not offer 

any advantage over the direct matrix solution and, unlike the Fourier expansion 

method, there is no way in which the method can be improved, given the present 
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state of the art. In addition, there does not appear to be any reason 

why the results for three-dimensional problems should be any more favor- 

able. In the light of these results, further work has been concentrated on the 

Fourier method outlined in section 2.2 which does appear to offer significant 

improvements in computation times. The results obtained with the basic Fourier 

method will be shown to be much more encouraging, and in addition, there are 

various techniques which can be applied to improve the convergence and which are 

not available for the eigenvector method. In particular, the use of the FFT 

algorithm enables all of the Fourier coefficients for the matrix to be calculated 

in O(25, m2) operations where S is the sum of all of the prime factors of m, 
m 

and this knowledge of all the coefficients is crucial to the improved truncation 

scheme to be presented in section 4.5. 

3.3 Sine Series Results 

A good starting point for the sine fit results is the El3 airfoil for which 

the eigenvector series results, figures 10 and 11, were so poor. Thus, figure 12 

shows the 24-term sine series fit to the source density for this airfoil from 

which it is clear that superior results are obtained for a smaller number of terms. 

A similar encouraging trend is observed for the E33 airfoil; figure 13 shows the 

source distribution, plotted against the arc length around the airfoil, obtained 

with a 24-term sine series. Also shown in this figure is the same solution after 

the application of a-smoothing to the expansion coefficients. This technique 

applies an attenuation factor to the Fourier coefficients such that the influence 

of the hiqher harmonics is decreased. The overall error is increased, but it can 

be seen that the residual oscillation is reduced leading to a more acceptable solu- 

tion. The corresponding tangential velocity distribution for the 24-term expansion 

(without u-smoothing) is shown in figure 14. This truncated solution reproduces 

the sharp peak around the trailing edge remarkably well although there is a sig- 

nificant oscillation present in the distribution. The amplitude of the oscilla- 

tion is considerably reduced by including 32 terms as in figure 15. Alternatively, 

the oscillation could be reduced by the application of a-smoothing, although this 

would reduce the overall agreement. These results, therefore, illustrate the 

potential of the basic sine fitting procedure although the crucial test for the 

technique must be based on realistic airfoil shapes with sharp trailing edges. 
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4.0 APPLICATION TO AIRFOILS WITH SHARP TRAILING EDGES 

4.1 The Basic Sine Series Fit 

As mentioned in the previous section, the combination of the long computation 

times and the poor convergence makes the eigenvector series fit an uneconomic 

proposition. This section will therefore present results obtained by the appli- 

cation of the sine series fit of section 2.2 to airfoils with sharp trailing 

edges. Sections 4.2 to 4.4 will describe some modifications to the basic fitting 

procedure introduced to improve the convergence, and section 4.5 will introduce 

a new matrix truncation scheme which enables an approximate solution to be 

obtained for all of the expansion coefficients of the source density. 

The first sharp airfoil considered is designated BCC#E and is shown in fig- 

ure 16. This is a very thick airfoil and so it provides a straightforward test 

case with which to continue the validation of the mode-function concept. With 

the freestream parallel to the arrow in figure 16, this airfoil generates no lift 

and at this incidence excellent results were obtained with the basic sine series 

method. The velocity distribution for m = 96 with 8, 12 and 16 terms is shown 

in figures 17-19. A reasonable approximation is obtained with only 8 terms and 

for 16 terms the truncated solution is almost identical to the full solution. 

However, when the airfoil is rotated through about lo", the results from this 

basic method became unsatisfactory. A sharp oscillation in the velocity distri- 

bution develops near the trailing edge, and this is present even when as many as 

40 terms are used. An examination of the way in which the Kutta condition is 

satisfied for a lifting airfoil reveals the cause of this failure. The singularity 

distribution consists of two components, the first a pure source distribution 

which satisfies the boundary condition on the airfoil due to the onset flow and 

the second a constant vortex plus a varying source distribution which together 

satisfy a zero normal velocity on the airfoil. These components are then combined 

to satisfy the Kutta condition at the trailing edge. For a lifting airfoil, each 

of these components becomes singular at a sharp trailing edge, but in the full 

Neumann solution these two singular terms cancel and the resulting source distribu- 

tion is finite at the trailing edge. However, when the solution is truncated, 

these two singular components are inaccurately approximated and the errors are not 
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eliminated when the combined solution is formed. In order to overcome this 

problem, several modifications to the basic method have been investigated, the 

first two aimed at improving the fitting method in order to cope with singular 

functions while the third method reformulates the Kutta condition so that it is 

satisfied simultaneously with the remaining equations thereby ensuring that the 

source distribution to be fitted is finite at the trailing edge. 

4.2 The Linear Fit 

It will be recalled that the basic sine series fit, equation (18), assumes 

that the function to be fitted is periodic with fl = fmtl. This is true in 

theory for a closed body, but if the function to be fitted contains a singular- 

ity at the trailinq edge, there will be a larqe discontinuity between the values 

fm and fmtl. However, by subtracting a linear function of the point number, it 

is possible to ensure that the values to be fitted are zero at both ends of the 

interval. Therefore, to fit the vector f = (f,, f2, . . . f,) we first define 

the vector 3 by 

=f 
'j j 

L!zi, ++fm, 
m-l 1 - j = 1, 2, . . . m (26) 

Thus g, = g, = 0 and this vector can now be expressed as a sine series, and so 

equation (18) can be replaced by 

m 

f. = 
J 

$++ b, + s b2 + - c 
bk sin[(k - 2)(j - l)h] (27) 

k=3 

where b, = f,, b2 

formation matrix G 

G = 

= fm and where h is now given by h = r/(m - 1). The trans- 

is therefore given by 

1 0 0 . . . 0 1 
h-2)/h-l 1 l/h-l 1 Sll . . . 
(m-3)/ (m-1 1 2/ h-1 ) 

'l,m-2 
s2, . . . ‘2 ,m-2 . . . . . . . I (28) . . . . . . . . . . . . . . I 

l/h-l 1 h-2)/W) 

SmB2 l 

- . . 

Sm-2,m-2 
0 1 0' . . . 0 

1 
where S.. = sin(ijh). 1J 
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This modified fitting procedure is applied both to the influence matrix and the 

column vectors so that the details of the application closely follow those given 
'L 

in section 2.2 for the basic method. The matrix product D = C8 still takes on 

the relatively simple structure 

I 

'3 c2 

c2 cl 

ul ul 

u2 -u 2 

D= . . 

- 

ul a2 . . . 'm-2 

ul 'U 2 *- . (-l)m-'um-2 

h-1 l/2 

(m-1 l/2 

. 

. 

where 

c1 = m(2m-1)/[6(m-l)], 

and 

c2 = m(m-2)/[6(m-1)] 

6. 
1 

= k Cot (i ih), i = 1, 2, . . . m-2 

This can now be substituted into equation (25) to give a new coefficient equation 

which is solved in precisely the same way as in the basic method. 

The results obtained for the lifting airfoil BCC#2 are encouraging with 

the velocity distribution obtained with n = 24 and n = 32 shown in figures 20 

and 21. This represents a significant improvement over the basic method, although 

the oscillation present for the 24-term solution develops rapidly as n is further 

reduced. Comparison of equations (18) and (27) indicates that the number of 

Fourier coefficients has been reduced from (m -1) to (m - 2). However, the 

FFT routine used places some restrictions on this quantity. Therefore, the air- 

foil point number has been increased b,y one for these and subsequent results. 
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4.3 The Singular Fit 

The breakdown of the results presented above for small values of n indicates 

that the singular behavior of the source density still presents a problem for the 

fitting procedure. It was therefore decided to further modify the technique in 

order to remove the singular contribution before fitting the function. As a very 

crude approximation, the singular behavior of the source density can be expressed 

as the inverse of the point number variable. Reference to equation (26) therefore 

leads to the definition of the vector to be fitted p as 

gj 
bl b2 -7, 

m+l-j J 
j = 1, 2, . . . m (30) 

where b, and b2 are defined in terms of f, and fm such that g, = g, = 0. 

Expressing 9 in terms of a sine series immediately gives 

m 

fj=m+; b +&b +x 
-jl J 2 bk sin[(k -2)(j - l)hI where h = n/(m - 1) (31) 

k=3 

Comparison of this with equation (27) shows that in 

formation matrix G, equation (28), only the first 

Thus 

r l/m 1 0 . . . O- 

l/m-l l/2 S,, . . ' 'l,m-2 

1 . . . . . . . 1 l/m 0 . . . 0 

the definition of the trans- 

two columns will be changed. 

(32) 

As with the linear fitting method described in the previous section, this technique 

is applied to each of the vectors and the influence matrix in equation (5) although 

it is primarily aimed at improving the fit to the source density vector. 

It can now be shown that the matrix D = CG will still be given by equation 

(29) with 
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m 

Cl = 
c %I 
k=l k 

m 
2 

c 
1 

c2 = 3-r -iF 
k=l 

(33) 

and 

m-2 

cl. = 
I i = 1, 2, . . . m-2 

k=l 

The application of this method therefore follows very closely that of the linear 

fitting method once the definition of these constants has been changed. 

This method was applied to the lifting airfoil, BCC#2, defined by 49 points 

and the results are shown in figures 22 and 23 for n = 16 and n = 20. This 

reduction in point number provides a more realistic value for m, but it does 

not lead to a proportionate reduction in n for a qiven quality solution. The 

results,therefore, provide a more realistic estimate of the ratio n/m. It can 

be seen that, even for this very crude approximation to the sinqular behavior of 

the source density, a significant improvement in the truncated solution is 

achieved. A reasonable agreement in the velocity distribution is achieved for 

n=l6 andfor n= 20 the results are very close to the full solution except 

near the trailing edge. 

4.4 The Combined Kutta Condition 

The results of the previous two sections illustrate that the basic sine fit- 

ting procedure can be adapted to cope with the singular source distribution which 

occurs in the calculation of the flow over a lifting airfoil. However, figure 23 

still shows a discrepancy between the truncated solution and the full solution 

near the trailing edge. This could be significant if the results were required 

for a boundary-layer calculation and so the precise form of the singularity to 

be removed prior to fitting would need to be investigated further if this method 

were to be pursued. On the other hand, this section considers the possibility of 

reformulating the problem so that the calculated source density is well behaved. 

It was seen in section 4.1 that the basic sine fit gave excellent results for 
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a nonlifting airfoil for which the basic source distribution automatically sat- 

isfies the Kutta condition. Therefore, if the circulation is treated as an 

additional unknown, the Kutta condition can be satisfied simultaneously with the 

source strength equations and the resulting source distribution will be finite 

at the trailing edge. 

This will now give a system of m + 1 equations in m + 1 unknowns which 

could, in principle, be solved by the direct application of any of the fitting 

procedures described above. However, this is not practical since the additional 

values added to the matrix and the column vectors will destroy their continuous 

nature upon which this method relies. For instance, a new column vector would be 

defined consisting of the source strengths and the circulation. Since the cir- 

culation will not be directly related to the adjacent source values, there will 

be a discontinuity in this modified vector. Such discontinuities cannot be ade- 

quately represented by continuous functions and so the total circulation will be 

poorly approximated, and the resulting solution will be slowly convergent in n. 

It is, however, possible to eliminate the circulation numerically and then 

apply the fitting technique to the modified m x m matrix. This approach has 

been applied to the lifting BCC#2 airfoil and the results are shown in figures 

24 and 25 for n = 12 and n = 16. The linear fitting described in section 4.2 

and u-smoothing were used and the resulting velocity distribution is very well 

behaved. Although the agreement near the leading edge is worse than that shown 

in figures 22 and 23, the undesirable oscillation near the trailing edqe has been 

removed. 

4.5 An Improved Matrix Truncation Scheme 

While the results presented so far are encouraging, it should be pointed out 

that these results are all based on the BCC#2 airfoil which, as noted earlier, is 

a very thick airfoil. The next step is therefore to test the method on an airfoil 

with a more realistic thickness, and that used is shown in figure 26. This is 

simply a scaled version of BCC#2, having been derived by dividing the y-ordinate 

of the thick airfoil by 3 and rotating the resulting points through 5". As the 

thickness of the airfoil is reduced, the peak in the influence matrix resulting 

from the effect of the source elements on the opposite surface, illustrated in 

figure 6, becomes more pronounced. Therefore, this airfoil provides a more severe 

22 



test case since the fittability of the matrix is impaired. The effect of this can 

be seen in figures 27 and 28 which show the velocity distribution for this airfoil 

using the method of section 4.4 with n = 16 and n = 20, respectively. 

It is clear that even with 20 terms, or n/m s 2/5, the results of the trun- 

cated solution are inadequate, while the use of a greater number of terms would 

detract from the computational efficiency of the mode-function method. With the use 

of the FFT algorithm, all of the expansion coefficients for the transformed matrix 

equation (25) are known but the size of the matrix equation to be solved must 

be kept as small as possible in order to reduce the computation time. It was;, 

therefore, decided to examine the truncation of the matrix equation with the aim 

of using all of the available information to obtain an improved solution while 

explicitly solving only a small fraction of the equations. 

The transformed coefficient equations to be solved are given by equation 

(25), i.e. 

b= d-BD& (34) 

where D is given either by equation (24) for the basic fit, or by equation 

(29) for the modified fit of sections (4.2) or (4.3). In either case the 

matrix B will consist primarily of Fourier coefficients. Provided that the 

matrix A is sufficiently smooth, the coefficients of the higher harmonics will be 

small compared with those of the lower harmonics. Thus, in general, the most 

significant information contained by the matrix B will be concentrated into the 

first few rows of the first few columns, i.e. the magnitude of the entries of B 
will decrease, in general, as the row or column number increases. Consideration 
of the structure of the matrix D leads to the conclusion that the matrix prod- 

uct C = BD will have the property that, in general, its elements will decrease 
in magnitude as the row number increases. 

In order to express these ideas in mathematical terms, the matrix C and the 

column vectors h and b in equation (34) can be partitioned to separate the 

first n rows and columns where n c m. Thus 
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where C,l 

the preceed 

the largest 

the largest 

isan nx 

ing discuss 

element in 

element in 

will also matrix C22 

n matrix, while &, and 4 each have n entries. From 

ion we can assert that, provided n is suitably chosen, 

the (m - n) x n matrix C2, will be small compared with 

%* Similarly the largest element in the (m - n) x (m - n) 

be small. 

Cl 
a= [J and a= (35) - 

% 

Substitution of equations (35) into equation (34) leads to the two simultane- 

ous matrix equations 

(1 - Cl,)&1 - Cl29 = 4 
(36) 

-3,q + (I - c22 Ia4 = tL2 

where the symbol I has been used to represent the n x n unit matrix in the 

first equation and the (m -n) x (m - n) unit matrix in the second equation. 

Now if n is "sufficiently large" and b and C "sufficiently smooth", then 

3 and C2, can be neglected and these two equations can be approximated by 

(1 -C,,)q = j+ 
(37) 

9=0 

which is the truncated form of the equation which has been used for all the 

results presented so far. At this stage the significance of the dominant 

diagonal becomes clear. If the unit matrices were absent from equation (36) then 

the terms C21, C22 and 3 would all have the same order of magnitude, and the 

approximation 9 = 0 does not necessarily follow. 

Equation (36) is exactly equivalent to the original matrix equation, but 

since C22 is small, it follows that we can make the approximation 

(1 - 52) 
-1 = I + c22 + . . . (38) 

and so &2 can be eliminated to give 
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[I -c,2(I + 5&(I -cll)-‘l(I -c,,)q = bq + C12(I + c22)$ (39) 

Again, since the matrix C21 is also small, we can introduce the second approx- 

imation 

CI - 520 + C22)C2,(I - Cl1 )-‘I 
-1 

= I + Cl20 + c22)c21(I -cl,) -l + . . . (40) 

Therefore, equations (36) can be approximated by 

(1 - c,,k, = III + c@ + C22)C2,(I - c,,)-‘1c~, + Cl20 + c22)b+1 

and 

a+! = (1 + c2& + C29,) (41) 

The explicit calculation of any of the matrix products involved in the 

right-hand side of equation (41) is out of the question. However, the terms on 

the right-hand side can each be calculated bY performing a succession of products 

between matrices and column vectors, together with one matrix inversion required 

to find (I - Cll)-'. It can be shown therefore that a full solution to equation 

(41) requires O(n3/3) operations to factorize the matrix (I -Cl,) together 

with 0(3m2) operations required to perform all of the products necessary to 

solve for g, and 3. The operation count for the solution of the basic trun- 

cated equation (37) is O(n3/3), so that for an additional 0(3m2) operations, 

the solution of (41) gives an approximation to all of the expansion coefficients. 

In addition, the solution for the first n coefficients gl will also be 

improved since it takes into account more of the available information. 

This scheme has been tested for the thin lifting airfoil, figure 26, and 

excellent results have been obtained. Figures 29 - 31 show the velocity distri- 

bution obtained using n = 8, 12, and 16, respectively, together with the linear 

fit of section 4.2. Thus, even for n = 8, this scheme can produce results which 

could be adequate for many applications, and for n = 16, or n/m Q l/3 

the results are very close to the full solution. 

These results serve to demonstrate the potential for this particular formu- 

lation of the mode-function method, although it should be pointed out that they 

do not necessarily represent the optimum. For instance, the only two approximations 
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used are given by equations (38) and (40). However, either of these could be 

made more accurate by the inclusion of higher-order terms, at the expense 

of increasing the number of matrix and vector products which must be calculated. 

A careful balance must be maintained between the need to further reduce the ratio 

of n/m and the additional number of operations incurred in doing so. In addi- 

tion, the results in figures 29 - 31 are based on the linear fitting technique. 

The results of sections 4.3 and 4.4 would indicate that a further improvement 

could be obtained by an improved handling of the singularity which occurs in 

the source distribution. 
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5.0 ALTERNATIVE SINGULARITY MIXES 

5.1 Pure Vortex Formulations 

The results presented in the earlier sections have all been based on the use 

of a source distribution with a constant strength vortex distribution introduced 

in order to provide the circulation about a lifting airfoil. As mentioned in 

section 4.5, the normal-velocity matrix associated with such a singularity distri- 

bution can be difficult to fit for a thin airfoil. However, the matrix does 

possess a dominant diagonal and this has been shown to be important for the suc- 

cess of the improved scheme proposed in section 4.5. On the other hand, the use 

of a pure vortex distribution with an external normal velocity condition is known 

to be well suited to thin airfoil problems. The associated matrix does not 

develop the sharp peaks associated with thin airfoils, but it no longer possesses 

a dominant diagonal. In fact, the values of the elements change sign rapidly 

across the diagonal, and their rate of change increases as the number of ele- 

ments is increased. 

To investigate the relative importance of each of these two factors, the 

basic sine series method together with a pure vortex distribution and external 

normal-velocity condition was applied to the smooth airfoil E33. The vorticity 

distribution used was linearly varying and continuous everywhere except at the 

rear stagnation point, where the first and last values of the vorticity were 

defined to be equal and opposite. 

The velocity distributions derived for m = 96, using 32, 36 and 40 terms, 

are illustrated in figures 32-34. Although the solution, shown in figure 33, 

obtained with 36 terms is good, this agreement must be fortuitous, since the 

additional terms included in figure 34 lead to a deterioration of the solution. 

This is clearly an unsatisfactory situation, and these results should be compared 

with those of figures 14 and 15 which were obtained with the same basic fitting 

method, but using a pure source distribution. The agreement obtained with the 

source method is superior and the behavior of this method was also more predict- 

able, leading to the conclusion that the pure source matrix is more suitable for 

the mode-function approach. In addition, it is not at all clear whether the final 

method described in section 4.5 could be adapted to handle matrices of this form 

and SO further work on this particular method was discontinued. 
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An alternative formulation for the pure vortex distribution is provided by 

satisfying the boundary condition that the internal tangential velocity is zero. 

This can be shown to imply that the external normal velocity also vanishes, but 

the numerical formulation is different. In fact, for a vortex density which is 

constant over each element, this problem is numerically identical to the basic 

source formulation used in sections 3 and 4 of this report. However, the applica- 

tion of this boundary condition to the continuous vortex distribution provides a 

convenient way of testing an alternative discretization with the mode-function 

method. The principal difference between the influence matrix for this problem 

and the basic source matrix stems from the choice of the elementary singularities 

used in each case. That selected for the linearly varying vortex distribution 

is taken to be unity at a given point on the airfoil, decreasing linearly to zero 

at the two adjacent points. The singularity is therefore spread out over two 

elements, whereas for the basic source method, the source strength is assumed to 

be unity over the whole length of one single element. This has the effect of 

spreading the "self-influence" spike out over two elements in the matrix thereby 

making it marginally smoother and easier to fit by the mode-function method. On 

the other hand, this self-influence term is no longer given simply by the unit 

matrix and it is no longer feasible to remove it prior to fitting. 

This method has been applied to the E33 airfoil and results for n = 24 and 

n = 32 are shown in figures 35 and 36. Comparison with figures 14 and 15 shows 

roughly the same level of agreement for the basic procedure. As noted above, the 

matrix fitted for this vortex method still contains the unfavorable diagonal 

peak, and so the results indicate that this adverse influence is offset by the 

benefits incurred by spreading the elementary singularities out over two elements. 

However, this particular formulation for the influence matrix renders the applica- 

tion of the improved truncation scheme of section 4.5 much more complicated and 

probably uneconomic. Therefore, this particular formulation has not been pursued 

any further. 

It should be noted, however, that this conclusion does not rule out the use 

of the mode-function method together with a linearly varying singularity distri- 

bution. The problem encountered above is a result of the particular discretization 

selected. Thus, the higher-order method developed by Hess (ref. 6) assumes a linearly 
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varying source distribution, but it allows small discontinuities in the source 

strength from one panel to the next. In this way the elementary singularities 

used are based on single elements and the resulting matrix has essentially the 

same fittability properties as that of the basic method used in section 4.1. 

5.2 Green's Identity Formulations 

The pure source distribution has been shown to be superior to the pure vortex 

distribution as far as the mode-function approach is concerned. However, for a thin 

airfoil the source strength becomes large and the use of a combined source and 

vortex distribution is attractive. One particularly useful combination is that 

based on Green's identity. This leads to source and vortex densities which are 

equal to the normal and tangential components of the perturbation velocity and the 

result is a source distribution which is more mild than the pure source distribu- 

tion and a vortex distribution which is more mild than the pure vortex distribution. 

This approach has been investigated by Bristow (refs. 7 and 8) who has considered 

two alternative formulations of the problem. The source density follows imnedi- 

ately from the known normal velocity and so the problem reduces to that of deter- 

mining the corresponding vortex density. The first approach adopted by Bristow 

(ref. 7) is based on the normal-velocity condition while the second (ref. 8) uses 

an equivalent formulation in which a uniform internal perturbation potential con- 

dition is satisfied. 

The suitability of both of these approaches for use with the mode-function 

procedure has been studied. However, the first method based on the external 

normal velocity condition gives rise to a matrix of the same form as that for the 

pure vortex method considered in section 5.1. This particular formulation was 

found to give unsatisfactory results for the basic fitting procedure and the 

improved technique of section 4.5 cannot be applied, so that it was decided 

not to pursue the corresponding Green's identity approach. 

The second method (ref. 8) with the internal potential condition leads to a 

matrix which is more amenable to the mode-function approach. The basic sine 

fitting procedure in conjunction with this Green's identity formulation has 

therefore been tested with the BCC#2 airfoil and the results obtained are shown 

in figures 37-40. The first two figures show the results obtained for the 
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nonlifting airfoil with m = 50 for n = 20 and n = 30, respectively, and 

figures 39 and 40 give the results for the lifting a irfoil for n = 30 and n = 40. 

The nonlifting results are worse than the correspond ing results obtained with the 

pure source distribution for which the basic fitting method was so successful. 

However, it will be recalled that this basic method failed for a lifting air- 

foil (see section 4.1). The Qreen's identity results do not break down for a lift- 

ing airfoil, but the number of terms required for an accurate solution is clearly 

unacceptable. The problem encountered here is similar to that referred to in 

section 4.4 when the Kutta condition was satisfied simultaneously with the source 

strength equations. In that case-the problem was overcome by numerically eliminat- 

ing the circulation before fitting the matrix. The truncated solution shown in 

figure 39 has the correct overall behavior, apart from close to the trailing edge, 

but the level of the velocity is displaced indicating that the total circulation 

is badly predicted. A similar approach to that adopted in section 4.4 could pre- 

sumably be expected to improve these results also. 

Therefore, this particular form of the Green's identity mix is less suited to 

the mode-function approach than is the pure source distribution. However,the Green's 

identity mix together with a potential boundary condition should, in general, lead 

to a matrix which is diagonally dominant and this should be amenable to solution 

by the mode-function method. In view of the advantages which this mix can have 

for thin airfoils, further work in this direction would be worthwhile. 
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6.0 APPLICATION TO THREE-DIMENSIONAL PROBLEMS 

6.1 Basic Approach 

The results presented so far are all concerned with two-dimensional applica- 

tions although, as stated in section 1.3, the numerical formulation of a three- 

dimensional Neumann problem is closely related to the two-dimensional case. In 

general, a three-dimensional application will involve a larger nutier of panels, 

and in addition, the structure of the influence matrix and the singularity vector 

will be rather different. It is, therefore, worthwhile to examine this structure 

before considering a three-dimensional application of the mode-function method. 

A typical three-dimensional configuration is shown in figure 1, and in order 

to formulate the corresponding matrix equation for the singularity strengths, a 

numbering system for the panels has to be selected. A natural choice is to con- 

sider successive streamwise sections so that the wing, for instance, would be 

composed of k strips each consisting of m panels. The corresponding source 

distribution vector would, therefore, consist of k blocks,each containing m 

values associated with the successive streamwise sections. This vector is approx- 

imately periodic in behavior since the values around one strip would be closely 

related to the corresponding values on an adjacent strip. In addition, there will 

be discontinuities in this vector associated with the jump across the trailing 

edge from one strip to the next. In the light of the two-dimensional results, a 

global fit of this function will not produce a very rapidly convergent mode-func- 

tion expansion and a sectional fitting procedure appears to be preferable. 

When applied to the influence matrix, the fitting procedure first fits the 

rows and then the columns of the resulting matrix. Provided that the matrix can 

be held in the core store of the computer, this process can be accomplished effici- 

ently. However, for a three-dimensional problem, this matrix is held on disc 

storage and the penalties involved in accessing this matrix by rows and then by 

columns could be considerable. This also indicates the need to fit the matrix 

in smaller blocks each of which could be held in core and again the use of m x m 

blocks corresponding to the individual streamwise sections appears to be the 

natural choice. 
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One final argument against the use of a global fitting method concerns the 

FFT algorithm. The results of section 4.5 clearly demonstrate the need to obtain 

all of the expansion coefficients for both the matrix and the right-hand side, 

and this in turn implies that the FFT algorithm must be used. It has been pointed 

out that this method is able to derive all of the Fourier coefficients for an 

m x m matrix in O(2 Sm m2) operations where S, is the sum of all of the prime 

factors of m. Therefore, it is necessary to choose m carefully to avoid includ- 

ing large prime factors which could excessively increase Sm. For instance, if 

m itself were a prime number, then S, = m and clearly the fitting procedure 

would be an 0(2m3) operation and this would be uneconomic compared with the 

direct solutions. In fact, as programmed at Douglas Aircraft Company, the FFT 

routine requires that the value of m ('or (m -1) in the case of the modified fit- 

ting procedures of section 4.2 through 4.5) must be even and a multiple of only 2, 3 

or 5. If the fitting procedure is applied to two-dimensional strips for which 

typically m < 100 this limitation is not unduly restrictive. However, as the 

value of m is increased, the number of acceptable values becomes more sparse. 

For instance, there are only 14 numbers between 2000 and 3000 which would be 

acceptable and this would clearly be far too restrictive. This restriction could 

be partially relaxed by the use of a more general FFT routine but it would still 

be necessary to restrict the size of the maximum prime factor to avoid S, 

becoming too large, and the use of a global fitting approach may still be too 

restrictive. 

The preferred approach to be adopted for a three-dimensional problem would, 

therefore, be to subdivide the matrix into blocks corresponding to the sectional 

strips. The diagonal blocks will be very closely related to the matrices for the 

two-dimensional problems considered in this report while the off-diagonal blocks 

will define the influence of all the points within one sectional strip upon all 

the control points of another sectional strip. It would not be necessar.y for these 

individual blocks to have the same dimensions, the only restriction being that 

each of these individual dimensions must be an acceptable value for the FFT 

algorithm. With the unknown source density vector and the given right-hand side 

vector similarly subdivided, the analysis follows very closely that given for 

the two-dimensional method presented here. In particular, the improved scheme 

presented in section 4.5 could be used and so the level of agreement and the 
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time saving to be expected from the mode-function approach can be based on this 

two-dimensional study. It will therefore be worthwhile to consider in more detail 

the operation count for a three-dimensional problem handled in this manner. 

6.2 Operation Count for a Three-Dimensional Problem 

Consider the panels to be subdivided into k strips and assume for the sake 

of simplicity that each strip consists of m panels. It has been mentioned that 

the calculation of all of the Fourier coefficients B of an m x m matrix involves 

O(2 S, m2) operations where S, is the sum of all of the prime factors of m. 

Typically, for m between 50 and 100, S, will be between about 11 and 15. Also 

the nutier of operations required to set up the matrix product C = BD of equa- 

tion (25) will be 0(2m2). Therefore, to find the corresponding matrices for all 

the blocks of the complete matrix will involve O[2k2(Sm + l)m2] operations. This 

will give all k2m2 coefficients for the new matrix problem, and so the method of 

section 4.5 can be used. Thus, following section 4.5 let the dimensions of the 

matrix equation to be solved explicitly be kn. Then O(k3n3/3) operations will 

be required to perform the triangular decomposition of this matrix and a 

further 0(3k2m2) operations will be required to complete the solution of equa- 

tions (41). The total number of operations required will therefore be 

O[k2(2Sm + 5)m2 + k3n3/3] for the mode-function solution as compared with 

O(k3m3/3) for a direct solution. Thus the ratio between these two quantities 

will be given by 

3 

0 n + 3(2S, + 5) 

m km (42) 

Therefore, this expression gives a guide as to the reduction in computing time 

required to Solve the simultaneous equations which could be achieved through the 

use of the mode-function approach. 

The results of section 4.5 indicate that it is realistic to assume that 

n/m = l/3 although in practice it may be possible to use a smaller value for 

this ratio. For a typical three-dimensional configuration with k = 40 and 

m=50, S, = 12 and the value of (42) becomes approximately l/12. For this 

particular case it would therefore be reasonable to expect the mode-function 

solution to be about 12 times faster than the direct solution. The computing 

effort in this case would be roughly equally divided between the fitting of the 
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matrix and the solution of the resulting equations. As the number of panels is 

further increased, the time required for the fitting becomes a smaller proportion 

of the total time. For such cases it would therefore be worthwhile to improve 

the approximations involved in section 4.5 in order to achieve lower values for 

n/m. Thus for a 4000 panel case with the assumption that n/m = l/4 the mode- 

function method would be 26 times faster than the direct solution, and an 

8000 panel case would be 38 times faster. On the other hand, an iterative solu- 

tion would require O(Ik2m2) operations for one flow condition where I is the 

number of iterations required. For a simple configuration such methods require 

lo-15 iterations, although for more complicated configurations such as those 

involving internal flow, more iterations may be required. Thus for one flow 

calculation the iterative method could, at best, be 4-5 times faster than the 

mode-function method for the examples considered above. However, the mode-func- 

tion method does possess several properties of the direct solution which are not 

present in the iterative method. For instance, both the calculation of flows at 

diff erent angles of attack and the simulation of boundary-layer effects require 

at 1 east two flow solutions. Each such solution involves a complete calculation 

for the iterative method whereas for both the direct and the mode-function methods 

the additional solutions can be computed for very little extra cost. In addition, 

the solution time for the iterative method is dependent on the nuder of itera- 

tions required. As this can vary significantly for different configurations, this 

method is not always predictable. However, provided that n/m is specified before- 

hand, the solution time for the mode=function method will be totally predictable. 

Thus, any apparent advantage of the iterative method could very quickly be lost 

in practice. 

The number of operations required to calculate n eigenvectors associated with 

an m x m system of equations is presently O(pnm2) where p is the number of iter- 

ations required to calculate an eigenvector. Typically p s 5 or 6 and so to be 

competitive with the direct solution would require n/m Q l/l5 and to be com- 

petitive with the sine fitting method outlined above would requ ire n/m s l/180. 

In other words, an accurate solution for the 2000 panel example would have to be 

obtained with just 11 eigenvectors. The results of section 3.2 indicate that 

this level of agreement cannot be achieved and so the eigenvector method does not 

provide a viable alternative to the Fourier approach unless a more efficient 

process for calculating the eigenvectors could be developed. 
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7.0 CONCLUSIONS 

The mode-function concept provides a new method for obtaining approximate 

solutions to large systems of linear simultaneous equations. The quantities 

defining manv such systems can be considered as discrete values of smoothly 

varying functions and so they can be expressed in terms of a given set of con- 

tinuous mode functions. In this way the original problem can be reformulated 

to give a new set of equations whose solution gives the mode-function expansion 

coefficients for the solution to the original problem. By truncating these 

expansions the number of equations to be solved is reduced and an approximate 

solution to the original set of equations is obtained. 

This report considers the application of this technique to a two-dimensional 

panel method calculation of the inviscid, incompressible flow about an airfoil. 

Two different sets of mode functions are studied, the first are eigenvectors of 

a matrix related to the matrix of the original equations while the second set is 

composed primarily of Fourier functions. An approach to the more time-consuming 

three-dimensional flow problems is proposed. On the basis of the two-dimensional 

results obtained, a substantial reduction relative to the direct solution could be 

achieved in the computer time required to solve the resulting equations. The main 

conclusions to emerge can be summarized as follows: 

1. In their basic form, neither the eigenvector series nor the Fourier series 

approaches to the mode-function concept give adequate results. Thus in 

section 3.2 it was shown that, even with a large number of terms, the 

eigenvector method failed to give adequate agreement for the two smooth air- 

foils considered. In section 4.1,the basic Fourier method was shown to fail 

when applied to a lifting airfoil with a sharp trailing edge. 

2. The computational effort involved in deriving the eigenvectors implies that 

this approach will be an acceptable alternative to the direct solution only 

if a small proportion of the eigenvectors need be calculated. There is no 

way in which the basic theory can be improved to produce a competitive method 

without further analytical work. Therefore, this approach was not pursued 

any further. 
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3. The Fourier series approach is promising since the FFT (Fast Fourier Transform) 

algorithm enables all of the coefficients to be calculated in a time which is 

small compared with a direct matrix solution. This enables modifications to 

be introduced to the basic Fourier method which significantly improve the 

convergence of the solution. Thus the results of section 4.5 show that an 

accurate solution for a realistic airfoil can be obtained by explicitly solv- 

ing less than l/3 of the original number of equations. 

4. The method of section 4.5 is applicable only to problems whose matrix has a 

dominant diagonal. When applied to the solution of a Neumann problem this 

restriction governs the mathematical and numerical formulation which should 

be used. In particular, an approach based on an unknown vortex distribution 

with an external normal-velocity condition will lead to an integral equation 

of the first kind and this is unsuitable for the mode-function version pre- 

sented here. However, a source distribution formulation leads to an integral 

equation of the second kind and that has been shown to give good results. In 

addition the formulation based on Green's identity together with a potential 

boundary condition leads to a matrix with a similar behavior and the mode- 

function approach will be applicable to such problems. 

5. To avoid fittability problems, the matrix should also be homogeneous in the 

sense that all of the original equations should be of the same form. Thus 

if the Kutta condition or any other equation is to be solved simultaneously 

with the singularity equations then this should be eliminated numerically 

before application of the fitting procedure. 

6. The application of the mode-function method directly to a large matrix 

associated with a three-dimensional problem could involve several numerical 

and computational inefficiencies. These problems could be avoided by 

fitting the matrix in blocks corresponding to two-dimensional sections of 

the configuration. This in turn implies that the results of this two- 

dimensional study should be particularly relevant to the three-dimensional 

problems at which this technique is ultimately aimed. 

7. The operation count presented in Section 6.2 indicates that for a typical 

problem involving 2000 panels the modedfunction method could be about 
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12 times faster than the direct solution, and for 4000 panels the method 

could be 26 times faster. Furthermore, this method would possess all of 

the advantages of the direct solution in that the solution time for the 

method would be predictable and additional solutions could be obtained at 

a very small additional cost. 

8. The method, therefore, appears to offer a promising approach to the reduc- 

tion of computing costs for the solution of large three-dimensional Neumann 

problems which are of interest in aircraft design. Alternatively the method 

would offer the capability of handling larger numbers of unknowns for the 

same computational cost. In addition, the method should be applicable to 

the solution of any large system of linear simultaneous equations provided 

only that the matrix has a dominant diagonal, and that it is otherwise 

smooth. 

9. Further work should be undertaken both to consider the application of this 

method to a Green's identity formulation in two-dimensional flow and to 

produce a working three-dimensional method based on either the source 

distribution or the Green's identity method. 
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Figure 5. The behavior of Aij matrix for i = 49 on the 96-point E33 airfoil. 
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Figure 6. The behavior of Aij matrix for i = 21 on the 96-point E33 airfoil. 
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Figure 9. Velocity distribution for E33 airfoil; eigenvector method. 
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Figure 10. Source distribution for El3 airfoil; eigenvector method. 
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Figure 11. Source distribution for El3 airfoil; eigenvector method. 
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Figure 12. Source distribution for El3 airfoil; basic Fourier method. 
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Figure 14. Velocity distribution for E33 airfoil; basic Fourier method. 
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Figure 15. Velocity distribution for E33 airfoil; basic Fourier method. 
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Figure 18. Velocity distribution for nonlifting BCC#2 airfoil; basic Fourier method. 



EXACT SOLUTION, m = 96 

++++ n=16,m=96 

S'Stotal 

-2.0 I 
Figure 19. Velocity distribution for nonlifting BCC#2 airfoil; basic Fourier method. 
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Figure 21. Velocity distribution for lifting BCC#2 airfoil (a = 10"); Fourier method with linear fit. 
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Figure 22. Velocity distribution for lifting BCC#2 airfoil (U = 10'); Fourier method with singular fit. 
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Figure 24. Velocity distribution for lifting BCC#2 airfoil (a = 10'); Fourier method with combined 
Kutta condition, linear fit and u-smoothing. 
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Figure 27. Velocity distribution for thin lifting airfoil (U = 5'). Fourier methgd tiit'a combined 
Kutta condition, linear fit and a-smoothing. 
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Figure 32. Velocity distribution for E33 airfoil; basic Fourier method with pure vortex 
distribution and external normal-velocity condition. 
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Figure 33. Velocity distribution for E33 airfoil; basic Fourier method with pure 
vortex distribution and external normal-velocity condition. 
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Figure 34. Velocity distribution for E33 airfoil; basic Fourier method with pure 
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Figure 35. Velocity distribution for E33 airfoil; basic Fourier method with pure vortex 
distribution and internal tangential-velocity condition. 
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Figure 36. Velocity distribution for E33 airfoil; basic Fourier method with pure vortex 
distribution and internal tangential-velocity condition. 
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Figure 38. Velocity distribution for BCC#2 nonlifting airfoil; basic Fourier method with 
Green's identity formulation. 
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